Visualizes stereo vision SLAM on the KITTI dataset.
Image
, LineStrips3D
, Scalar
, Transform3D
, Pinhole
, Points3D
, TextLog
This example shows farhad-dalirani's stereo visual SLAM implementation. It's input is the video footage from a stereo camera and it produces the trajectory of the vehicle and a point cloud of the surrounding environment.
To easily use Opencv/Eigen types and avoid copying images/points when logging to Rerun it uses CollectionAdapter
with the following code:
template <>
struct rerun::CollectionAdapter<uint8_t, cv::Mat>
{
/* Adapters to borrow an OpenCV image into Rerun
* images without copying */
Collection<uint8_t> operator()(const cv::Mat& img)
{
// Borrow for non-temporary.
assert("OpenCV matrix expected have bit depth CV_U8" && CV_MAT_DEPTH(img.type()) == CV_8U);
return Collection<uint8_t>::borrow(img.data, img.total() * img.channels());
}
Collection<uint8_t> operator()(cv::Mat&& img)
{
/* Do a full copy for temporaries (otherwise the data
* might be deleted when the temporary is destroyed). */
assert("OpenCV matrix expected have bit depth CV_U8" && CV_MAT_DEPTH(img.type()) == CV_8U);
std::vector<uint8_t> img_vec(img.total() * img.channels());
img_vec.assign(img.data, img.data + img.total() * img.channels());
return Collection<uint8_t>::take_ownership(std::move(img_vec));
}
};
template <>
struct rerun::CollectionAdapter<rerun::Position3D, std::vector<Eigen::Vector3f>>
{
/* Adapters to log eigen vectors as rerun positions*/
Collection<rerun::Position3D> operator()(const std::vector<Eigen::Vector3f>& container)
{
// Borrow for non-temporary.
return Collection<rerun::Position3D>::borrow(container.data(), container.size());
}
Collection<rerun::Position3D> operator()(std::vector<Eigen::Vector3f>&& container)
{
/* Do a full copy for temporaries (otherwise the data
* might be deleted when the temporary is destroyed). */
std::vector<rerun::Position3D> positions(container.size());
memcpy(positions.data(), container.data(), container.size() * sizeof(Eigen::Vector3f));
return Collection<rerun::Position3D>::take_ownership(std::move(positions));
}
};
template <>
struct rerun::CollectionAdapter<rerun::Position3D, Eigen::Matrix3Xf>
{
/* Adapters so we can log an eigen matrix as rerun positions */
// Sanity check that this is binary compatible.
static_assert(
sizeof(rerun::Position3D) == sizeof(Eigen::Matrix3Xf::Scalar) * Eigen::Matrix3Xf::RowsAtCompileTime
);
Collection<rerun::Position3D> operator()(const Eigen::Matrix3Xf& matrix)
{
// Borrow for non-temporary.
static_assert(alignof(rerun::Position3D) <= alignof(Eigen::Matrix3Xf::Scalar));
return Collection<rerun::Position3D>::borrow(
// Cast to void because otherwise Rerun will try to do above sanity checks with the wrong type (scalar).
reinterpret_cast<const void*>(matrix.data()),
matrix.cols()
);
}
Collection<rerun::Position3D> operator()(Eigen::Matrix3Xf&& matrix)
{
/* Do a full copy for temporaries (otherwise the
* data might be deleted when the temporary is destroyed). */
std::vector<rerun::Position3D> positions(matrix.cols());
memcpy(positions.data(), matrix.data(), matrix.size() * sizeof(rerun::Position3D));
return Collection<rerun::Position3D>::take_ownership(std::move(positions));
}
};
// Draw stereo left image
rec.log(entity_name,
rerun::Image(tensor_shape(kf_sort[0].second->left_img_),
rerun::TensorBuffer::u8(kf_sort[0].second->left_img_)));
The camera frames shown in the space view is generated by the following code:
rec.log(entity_name,
rerun::Transform3D(
rerun::Vec3D(camera_position.data()),
rerun::Mat3x3(camera_orientation.data()), true)
);
// …
rec.log(entity_name,
rerun::Pinhole::from_focal_length_and_resolution({fx, fy}, {img_num_cols, img_num_rows}));
void Viewer::Plot(std::string plot_name, double value, unsigned long maxkeyframe_id)
{
// …
rec.set_time_sequence("max_keyframe_id", maxkeyframe_id);
rec.log(plot_name, rerun::Scalar(value));
}
rec.log("world/path",
rerun::Transform3D(
rerun::Vec3D(camera_position.data()),
rerun::Mat3x3(camera_orientation.data()), true));
std::vector<rerun::datatypes::Vec3D> path;
// …
rec.log("world/path", rerun::LineStrips3D(rerun::LineStrip3D(path)));
rec.log("world/landmarks",
rerun::Transform3D(
rerun::Vec3D(camera_position.data()),
rerun::Mat3x3(camera_orientation.data()), true));
std::vector<Eigen::Vector3f> points3d_vector;
// …
rec.log("world/landmarks", rerun::Points3D(points3d_vector));
rec.log("world/log", rerun::TextLog(msg).with_color(log_color.at(log_type)));
// …
rec.log("world/log", rerun::TextLog("Finished"));
This is an external example, check the repository on how to run the code.